Mathematical Libraries in Ada '

Jan Kok

Centre for Mathematics and Computer Science
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

In this paper a description is given of past and present activities at the CWI
related to the programming language Ada. After a survey of Ada's history and
its design aims, more details are given of language features that are of special
interest for the implementation of numerical methods and the construction of
large scientific libraries. Characteristics of these libraries, enhanced by the use
of Ada, are portability, reliability, and reusability. The paper concludes with an
outline of future activities which will take place in international co-operation.
KEY WORDS: Ada, high level language, scientific libraries, portability, reliability,
reusability.

I. INTRODUCTION 4

At the end of the sixties it was recognized that the production of computer
software was not keeping pace with the increase in availability and possibilities
of modern computers. Causes of the so-called ‘software crisis’ were found in
the old-fashionedness of programming methods and tools. Independent efforts
to provide a new programming language for common use (one of the tools)
merely contributed to the crisis, because of the confusion of languages and the
incompatibility of systems.

In a programme launched by the US Department of Defense for
modernising both tools and methods, one of the results was the definition of a
new programming language for common use. This language, called Ada [I],
was primarily designed for the production of large portions of maintainable
software for real-time applications. Furthermore Ada’s use should enhance
software characteristics such as readability, modularity, portability, reusability,
and reliability.

With respect to scientific computation, Ada was intended in the first place
for use in those calculations invoked in software for real-time applications. But
the readability, modularity, portability, reusability, and reliability, which make
programming in large teams possible as well, make Ada also useful for the
production of software for large-scale scientific computation on mainframes.

1. Ada is a registered trademark of the US Government (AJPO).

19

The need for mathematical software in Ada with the same qualities as
software for real-time applications is not yet widely recognized by users. It is
generally assumed that computer manufacturers have completely satisfied the
demand for software for all kinds of computations. Here, many enjoyable case
stories of application failures are tacitly ignored [2]. Perhaps it is the rise of a
modern language like Ada which now clearly exposes the shortcomings of
previous hardware and software provisions. Possibilities not offered by most
other languages are user demands for various real precisions, constructs for
writing portable and reusable software, and safe interaction between separate
library modules.

One may expect that software produced before, in older languages and
probably in many versions for all kinds of machines and systems, should be
reconsidered for use in Ada, and that re-design of mathematical software in
agreement with the Ada design goals might turn out to be very profitable.

An early initiative was taken by the National Physical Laboratory (NPL) in
Teddington and the Centrum voor Wiskunde en Informatica (CWI), to
investigate both the new possibilities given by the language Ada for the design
of mathematical software and for the construction of scientific libraries for
large-scale computation, and to offer solutions for the problems encountered.
This led to a project by NPL and CWI that was sponsored by the European
Community. In this project, which lasted from 1982 to 1983, guidelines were
produced for the design of large, modular, scientific libraries in Ada [4].

In the following sections first a summary of Ada’s history and design are
given, with a discussion of Ada’s design goals and some information about
Ada’s availability. Next, language features are described which open new ways
for the implementation of efficient and portable mathematical software for
large scientific libraries. Finally, completed and ongoing activities are
described.

2. ADA’S HISTORY

The story of Ada starts in 1974 when Ada’s foster parent, the US Department
of Defense (DoD), initiated a programme for obtaining more profits from their
software budget, in particular concerning software for embedded systems.
After an analysis of software costs, with the conclusion that too much was
spent on maintenance and conversion, characteristics were gathered for a
programming language in common for all types of machines in use, and for all
kinds of applications.

When it became clear that no existing language satisfied the requirements,
proposals were requested for the development of a new language. From the
selection of four proposals for further evaluation, in 1979 one language design
was chosen to become the common high-level language. Its name would be
Ada, in honour of Augusta Ada Lovelace, daughter of Lord Byron, and as the
assistant of Charles Babbage one of the first programmers. In 1980 this
language was standardized by the DoD, and a revised version was accepted as
ANSI standard in 1983 (ANSI: American National Standards Institute). The

20

process for its becoming an ISO standard continues.

One of the characteristics of Ada is that its text should be clear, readable,
and easy-to-understand: the possibility of programming errors and typing
errors not being detected should be very low. This characteristic is achieved
by:

- offering language expressions for:

- the declaration of (abstract) data types;

- making packages of sets of data types, operations, and routines;

- defining library modules, where components of library modules can
be packages as well as individual routines, i.e. procedures, functions,
or operators;

- recovery from aborts by the so-called handling of exceptions;

- programming for distributed systems by the so-called rasking facility;

- detection of errors at an early stage by:

- Ada’s strong typing rules and scope rules;

- the small number of error-prone language concepts;

- several constructs that encourage structured programming;

- the inhibition of access to abstract data types from outside;

- possibilities for the design of portable programs by means of language
concepts for:

- obtaining hardware or system information through environmental
parameters;

- connecting appropriate hardware provisions to user-defined data
types (and also operators, exceptions, and tasks);

- reusing software through the generic concept (see section 3).

The availability of Ada is still very small. The amount of language constructs
and their semantic intricacies make the writing of a compiler and run-time
system a major software project. Moreover, only systems which correctly
process an official suite of about 2000 test programs are allowed to be called
Ada (compiler validation). And although the language requirements were such
that compilers ought to be able to generate efficient object code, not much can
be said about this yet, since the first efforts are spent on obtaining correct
object code, not fast. For Ada to become a success, many more compilers for
different machines must become available within the next few years.

Meanwhile, the creation of a new language became just one component of
the much larger DoD activity for improving software technology. A related
project is the construction of Ada Programming Support Environments (APSE)
as the indispensable working environments for Ada programmers and for the
execution of Ada programmes. An APSE should contain besides the Ada
compiler and run-time system, the command language, an Ada-directed editor,
libraries, verifiers, a debugger, monitors, data bases, etc.

21

3. USE OF ADA FOR NUMERICAL SOFTWARE

During 1982 and 1983 the National Physical Laboratory, Teddington, and the
Centrum voor Wiskunde en Informatica were engaged in an investigation of
the possibilities of designing large modular scientific libraries in Ada. The
project was sponsored by the Commission of the European Community and
culminated in the production of a set of guidelines [4] which include
recommendations on the ways in which Ada can and might be used in this
context.

The language features which might make Ada particularly useful for the
redesigning of numerical software and for the construction of coherent
scientific libraries, are:

- Several floating-point types can be defined. E.g.

type REAL is digits 8;

(Meaning: a new floating-point type named REAL is made by specifying
a minimal number of 8 significant decimal digits.)
If hardware floating-point types with different mantissa lengths are
available, then the hardware type best suitable to the user-defined type
will be associated with it. If the user’s requirements cannot be met, the
program will not run.

- Type definitions and associated operator definitions can be made for all
kinds of numerical data structures, e.g.
VECTOR, MATRIX, COMPLEX, RATIONAL, etc.

- A package in Ada is a capsule containing related definitions of types,
operators, and procedures. Moreover, the physical structure of data types
can be hidden from the user. For example,

package RATIONAL FIELD is
type RATIONAL is record
NUMERATOR : INTEGER;
DENOMINATOR : POSITIVE;
end record,

function ”+” (A, B : RATIONAL) return RATIONAL,;
-- analogous declarations for "-”, "#”, ”/”, ...

end RATIONAL FIELD;

The declarations of this package can be obtained together by mentioning:
use RATIONAL FIELD.
If the inner declaration is replaced by:

22

type RATIONAL is private;

this would make the structure of the type RATIONAL hidden.

Language concepts are available for the construction of large pre-compiled
libraries containing as modules packages, but also individual routines.
The language rules enable that consistency checks for parameters (in
compile time) will always be possible.

Modules can be parameterized with types, operators and other
subprograms, as well as with individual values and variables. Such
modules are called generic subprograms or packages, and it allows library
packages to be constructed once for a whole class of user-defined types
and the operations thereon.

For example, for sorting values in a one-dimensional array only one
generic sort procedure need be written:

generic
-- (with three generic parameters:
type EL TYPE is private;
type AR TYPE is array (INTEGER range <>) of EL TYPE;
with function "<” (A, B : EL TYPE) return BOOLEAN
is <>;

procedure GEN SORT (X : in out AR _TYPE);

This generic procedure is a template for sorting procedures. A concrete
sorting procedure can be obtained by substituting a linear array type, its
component type, and the operator ”<” acting on values of the component
type. The specification of such a procedure would be

procedure SORT INTEGERS (X : in out INTEGER_ARRAY);

Exceptions and the recovery from raised exceptions can be used for the
description of all abnormal events. E.g., when the declaration of an
exception SINGULAR MATRIX is available, a routine can execute the
statement B

raise SINGULAR MATRIX;
to cause abnormal termination of the called routine. However, the user

can catch raised exceptions in so-called exception handlers, in order to
execute some recovery action.

23

- The concept of tasks is a high-level concept for describing in a readable
and reliable way concurrent activities and the safe communication
between tasks, and between a user and his tasks. Tasks can be used to
describe in a clear way the provision of numerical services to processes in
embedded systems, but also the processing of distributed computations for
special architectures, especially for general-purpose multi-processors.

A conclusion of the NPL/CWI investigation was that Ada is a useful language
and several Ada features are of much interest for the redesigning and
construction of large scientific libraries. Difficulties caused by idiosyncracies of
the language syntax and semantics can be overcome satisfactorily in most of
the cases, and solutions were offered. Moreover, since elementary mathematical
provisions in Ada style were expected to be indispensable for Ada
programmers, a standard definition and the early implementation of basic
functions packages were emphatically recommended in [3].

In [4] also examples of library components were given, and language items
were listed which ought to be cleared (by Ada implementors) or preferably
changed in a future language revision.

For more information and details one is referred to the complete report [4].

4. FUTURE ACTIVITIES

Members of the CWI Numernical Mathematics Department are currently co-
operating with colleagues from six European Community countries (and
Sweden) in the EC-supported Ada-Europe Numerics Working Group. This
group has already produced several documents on all aspects of the
implementation of numerical libraries in Ada and the design of new methods.
Co-operation is sought with a US counterpart.

A problem the group is facing is that the need for newly-designed
mathematical software with properties that Ada can provide (reliable, well-
designed, readable, and portable modules in coherent packages) is not
generally recognized. Ada offers the possibility of imposing a hierarchical
structure onto libraries, through encapsulation of related declarations.
Furthermore, consistency checks of passed parameters are maintained
throughout the library’s life cycle. Finally, relying on the mathematical
provisions made available by a computer manufacturer has sometimes been a
bad experience. It is regrettable that the very experts on the analysis of the
results of long computations have been ignored so often.

Meanwhile, co-operation between the CWI and the Numerical Algorithms
Group (NAG, Oxford) and NPL (among others) has been established, with the
final aim of making all common numerical provisions available to Ada
programmers. As a start, pilot implementations will be made of basic modules
of numerical libraries in Ada, for which subsidies have been granted.

24

REFERENCES

1.

2.

3.

ANSI/MIL-STD 1815 A. (1983). Reference Manual for the Ada
Programming Language.

R.L. BABER (1984). Software development: science or patchwork? CWI
Newsletter 2, 18-34.

J. Kok, G.T. Symm (1984). A proposal for standard basic functions in
Ada. Ada Letters Vol. IV.3, 44-52.

G.T. SyMM, B.A. WicHMANN, J. Kok, D.T. WINTER (1984). Guidelines
for the Design of Large Modular Scientific Libraries in Ada, NPL Report
DITC 37/84, CWI Report NM-Ng8401.

25

